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Motivation: MaxSAT

Competitive optimization paradigm.
I planning, scheduling, data analysis, machine learning, knowledge

representation and reasoning, verification, . . .
State-of-the-art complete solvers (for industrial instances) build on
the success of CDCL SAT solvers.

I Optimization task reduced into a sequence of satisfiability queries.
I Extensive use of incremental SAT.

New application domains and solver improvements annually.
(Recent survey in [Bacchus, Järvisalo, and Martins, 2021])
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Goals of the Talk

Overview of existing complete SAT-based MaxSAT algorithms.
I Solution Improving
I Core Guided
I Implicit Hitting Set

Overview of the additional techniques employed by solvers.
(If time) Other interesting MaxSAT-related research directions.

Thanks to Ruben Martins and Matti Järvisalo for contributions to the slides
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Notation: Maximum Satisfiability

Optimisation extension of Boolean
Satisfiability (SAT)
An instance:

I a set of hard clauses,
I a linear objective function cost

Find τ that:
I satisfies all hard clauses and
I minimizes cost

Note: All SAT-based solvers support
weights.

FH = {(b1 ∨ x), (¬x ∨ b2),

(b2 ∨ y), (¬y ,b3)}
FH = {(b1 ∨ x), (¬x ∨ b2),

(b2 ∨ y), (¬y ,b3)}

τ(y) = τ(b1) = τ(b3) = 0
τ(x) = τ(b2) = 1

cost ≡ b1 + b2 + b3

FS = {(¬b1), (¬b2), (¬b3)}

cost ≡ b1 + b2 + b3cost ≡ w1b1 + w2b2 + w3b3

cost(τ) = 1
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Example Problem
Shortest Path

find shortest path from S to G.
one variable for each square.

I true if path goes through
square.

(hard) clauses:
I enforce correspondence

between solutions and
paths.

cost function:
I measures length of path.

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

VAR(F) = {a,b, c, . . . , r , s, t}

FH = ISPATH(S,G)

τ = {b,g,m, t , s, r} ∪ {¬a,¬c, ..}

cost = a + b + c + . . .+ r + s + t
cost = {(¬a), (¬b), . . . , (¬s), (¬t)}
cost = a + b + c + . . .+ r + s + t = 6
cost = {(¬a), (¬b), . . . , (¬s), (¬t)}

Note: Best solved with other methods, used here to illustrate different MaxSAT algorithms.
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Solution Improving Search
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Solution Improving Search

Intuition
1 Obtain a solution τ∗

2 Update UB
3 Improve τ∗ until proven optimal

UB =∞

UB = 10UB = 10UB = 6

SAT-SOLVE(FH)SAT-SOLVE(FH)SAT-SOLVE (FH ∧ COSTLESSTHAN(UB))SAT-SOLVE (FH ∧ COSTLESSTHAN(UB))

τ 1 = {a, c, d , e, f , g,m, u, t , r ,¬b,¬l , . . . ,¬q}
cost(τ 1) = 10

τ 2 = {a, c, d , e, l , r ,¬b,¬g, . . . ,¬q,¬s,¬t}
cost(τ 2) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q
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Additional Techniques

Central Challenge
Encoding COSTLESSTHAN(UB) as clauses.

State of the art use the watchdog encoding
[Paxian, Reimer, and Becker, 2018].
Additional inference rules for decreasing the size of the objective.

I e.g TrimMaxSAT for finding assignments of objective literals implied
by the clauses [Paxian, Raiola, and Becker, 2021].

Solvers
QMaxSAT [Koshimura, Zhang, Fujita, and Hasegawa, 2012]

Pacose [Paxian, Reimer, and Becker, 2018]

Also commonly applied in incomplete solving.
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Core Guided Search
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Core Guided Search
First proposed for MaxSAT in [Fu and Malik, 2006]

Intuition
1 Starting from LB = 0 check existence of solution τ for which

cost(τ) = LB.
2 Increase LB until optimum reached by relaxing formula.
3 Use cores provided by SAT-solver for more effective relaxation.
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Definition: UNSAT cores

Clause (or set of) of objective literals satisfied by all solutions.
I equivalent to an unsatisfiable set of unit soft clauses.

Can be obtained from SAT solvers via assumptions.

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q κ1 = {a,b}≡ (a ∨ b) ≡ {(¬a), (¬b)}
all paths go through either a or b

κ2 = {h,d , f ,m}
all paths go through (at least) one of h, d, f or m.

κ3 = {q, k , r}
all paths go through (at least) one of q, k or r.

...
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Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅LB = 1, K = {κ0}LB = 2, K = {κ0, κ1}LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)SAT-SOLVE(F i
H ∧ F i

B)SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core
Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅

LB = 1, K = {κ0}LB = 2, K = {κ0, κ1}LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅

LB = 1, K = {κ0}LB = 2, K = {κ0, κ1}LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}

κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅

LB = 1, K = {κ0}

LB = 2, K = {κ0, κ1}LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅

LB = 1, K = {κ0}

LB = 2, K = {κ0, κ1}LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core

Formula is unsatisfiable
Obtain new core:

κ0 = {(¬a), (¬b)}

κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅LB = 1, K = {κ0}

LB = 2, K = {κ0, κ1}

LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅LB = 1, K = {κ0}LB = 2, K = {κ0, κ1}

LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core Guided Search
Shortest path

Intuition
1 Initialise F0

H = FH and F0
B = {¬b | b ∈ cost}

2 For i = 0, . . . check if F i
H ∧ F

i
B is satisfiable

3 If not, relax F i
H and F i

B
4 Otherwise, the obtained solution is optimal

LB = 0, K = ∅LB = 1, K = {κ0}LB = 2, K = {κ0, κ1}

LB = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(F i
H ∧ F i

B)SAT-SOLVE(F i
H ∧ F i

B)

SAT-SOLVE(F i
H ∧ F i

B)

Informally: FH ∧
∧
κ∈K

∑
b∈κ b ≤ 1 ∧

∧
b/∈K ¬b

i.e. is there a path that visits at most 1 node

from each found core
Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l , r ,¬a, . . . ,¬q}
cost(τ) = 6

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 13 / 25



Core-Guided Algorithms
Central Developments

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
MSCG

2015
OpenWBO.RES
WPM3
Maxino

RC2
UWrMaxSat
EvalMaxSAT
CASHW-
MaxSAT

CGSS

2018 2021
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Early algorithms: Core relaxations with hard constraints
[Fu and Malik, 2006; Marques-Silva and Planes, 2007; Manquinho, Marques-Silva, and Planes,

2009; Ansótegui, Bonet, and Levy, 2009, 2010; Heras, Morgado, and Marques-Silva, 2011]
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CGSS

2018 2021

Central improvement 1: Incremental (Lazy) relaxation (cardinality)
constraints
[Martins, Joshi, Manquinho, and Lynce, 2014; Morgado, Dodaro, and Marques-Silva, 2014]

Used by all current solvers
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(A few) Additional Techniques

cover optimization, structure sharing, intrinsic atmost1
[Ansótegui, Bonet, and Levy, 2010; Ansótegui, Didier, and Gabàs, 2015; Ansótegui and
Gabàs, 2017; Ihalainen, Berg, and Järvisalo, 2021; Ignatiev, Morgado, and Marques-Silva,
2019]

I Analyze underlying core structure in order to improve relaxation constraints.

stratification, weight-aware core extraction, soft clause
partitioning [Ansótegui, Bonet, Gabàs, and Levy, 2012; Berg and Järvisalo, 2017;
Neves, Martins, Janota, Lynce, and Manquinho, 2015]

I Extract cores that result in bigger lower bound increases.
I Connections to multi-level optimization.

hardening [Ansótegui, Bonet, Gabàs, and Levy, 2012]

I Fix values of objective literals based on upper bounds

Recently, presolving with an ILP solver.
I More on this in the MSE talk.
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Implicit Hitting Set Based MaxSAT
Solving
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Definition: Hitting sets

Set of objective literals with non-empty intersection with cores.
cost of hitting set, number of literals in it.

2,4

1,1 3,1

S b g m t

a ? f ? s

c d e l r

h i j k G

n o ? p q κ1 = {a,b}

κ2 = {h,d , f ,m}

κ3 = {q, k , r}

CORES = {κ1, κ2, κ3}
hs1 = {a,d , f ,q} cost(hs1) = 4
hs2 = {b,m,q} cost(hs2) = 3
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MaxSAT with hitting sets
First proposed in [Davies and Bacchus, 2011]

Intuition
Every solution corresponds to a hitting set over all cores.
Cost of solutions match cost of corresponding hitting sets.
Central insight - we do not need every core.

I cost(hs) ≤ OPT-COST(F) holds for minimum cost hs over any set of CORES

κ1 = {a,b}

κ2 = {h,d , f ,m}

κ3 = {q, k , r}

CORES = {κ1, κ2, κ3}
hs = {b,m,q} cost(hs) = 3 ≤ 6 = OPT-COST(F)

2,4

1,1 3,1

S b g m t
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The IHS approach to MaxSAT
[Davies and Bacchus, 2011]
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computes min-cost hs over

current set of cores
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extracts new cores
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(Some) Further Techniques

non-optimal hitting sets [Saikko, Berg, and Järvisalo, 2016].
I extract more cores.

reduced cost fixing [Bacchus, Hyttinen, Järvisalo, and Saikko, 2017]

I use information from the IP solver in order to fix objective literals in the SAT-solver

abstract cores [Berg, Bacchus, and Poole, 2020].
I Add extension variables and extract cores over those.

Solvers
MaxHS [Davies and Bacchus, 2013],
LMHS [Saikko, Berg, and Järvisalo, 2016]

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 20 / 25



(Some) Further Techniques

non-optimal hitting sets [Saikko, Berg, and Järvisalo, 2016].
I extract more cores.

reduced cost fixing [Bacchus, Hyttinen, Järvisalo, and Saikko, 2017]

I use information from the IP solver in order to fix objective literals in the SAT-solver

abstract cores [Berg, Bacchus, and Poole, 2020].
I Add extension variables and extract cores over those.

Solvers
MaxHS [Davies and Bacchus, 2013],
LMHS [Saikko, Berg, and Järvisalo, 2016]

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 20 / 25



SAT-Based MaxSAT solving
Conclusion

Algorithms

Solvers Additional
Inference Rules

Core-Guided

IHS

Solution Improving

RC2

CGSS

Eval

CASH

MaxHS

UWR

Pacose
...

Intrinsic atmost1

Hardening

Subsumed Label
Elimination

Bounded Variable
Elimination

Stratification

Trim MaxSAT

Binary Core Removal...

Take Home Message
Modern SAT-Based MaxSAT solvers implement a
large number of different heuristics and algorithms

that interact in intricate ways.

A central challenge
of the field is understanding these interactions and

which techniques are effective on the benchmarks of interest.
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Other Interesting Topics
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Other Research Directions

Incremental MaxSAT
Solve sequences of related MaxSAT instances.
IPAMIR interface for incremental computations.

I Used to realize the new incremental track in this years MSE.

[Niskanen, Berg, and Järvisalo, 2022; Si, Zhang, Manquinho, Janota, Ignatiev, and Naik, 2016;

Niskanen, Berg, and Järvisalo, 2021]

Incomplete (any-time) MaxSAT
Compute a solution of as low cost as possible within limited time &
memory.
Many specialised solvers, including local search solvers.

[Cohen, Nadel, and Ryvchin, 2021; Zheng, He, Zhou, Jin, Li, and Manyà, 2022; Cai and Lei,

2020; Nadel, 2018; Berg, Demirovic, and Stuckey, 2019; Demirovic and Stuckey, 2019]

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 23 / 25



Other Research Directions

Incremental MaxSAT
Solve sequences of related MaxSAT instances.
IPAMIR interface for incremental computations.

I Used to realize the new incremental track in this years MSE.

[Niskanen, Berg, and Järvisalo, 2022; Si, Zhang, Manquinho, Janota, Ignatiev, and Naik, 2016;

Niskanen, Berg, and Järvisalo, 2021]

Incomplete (any-time) MaxSAT
Compute a solution of as low cost as possible within limited time &
memory.
Many specialised solvers, including local search solvers.

[Cohen, Nadel, and Ryvchin, 2021; Zheng, He, Zhou, Jin, Li, and Manyà, 2022; Cai and Lei,
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Other Research Directions

Branch & Bound for MaxSAT
Early work effective especially on small, difficult problems. [Abramé

and Habet, 2016, 2014; Li, Manyà, and Planes, 2005]

Recent paper on adding clause learning to B&B algorithms.
I MaxCDCL solver [Li, Xu, Coll, Manyà, Habet, and He, 2021].

Abstract Reasoning & Preprocessing
MaxSAT resolution [Bonet, Levy, and Manyà, 2007; Bonet, Buss, Ignatiev,

Marques-Silva, and Morgado, 2018]

Clause redundancy notions lifted from SAT to MaxSAT [Ihalainen,

Berg, and Järvisalo, 2022; Belov, Morgado, and Marques-Silva, 2013].
Standalone preprocessors available.

I MaxPRE [Korhonen, Berg, Saikko, and Järvisalo, 2017; Ihalainen, Berg, and
Järvisalo, 2022].

I Coprocessor [Manthey, 2012]
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Conclusions

SAT-based MaxSAT solving:
Effective approach for solving industrial MaxSAT instances
Combine various algorithms and heuristics in non trivial ways.
Active (and interesting) area of research.

I Many ideas have also been studied in e.g. PBO and CP.
[Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Smirnov, Berg, and
Järvisalo, 2021; Gange, Berg, Demirovic, and Stuckey, 2020]

Further Resources
Surveys in the handbook of satisfiability [Bacchus, Järvisalo, and Martins, 2021; Li

and Manyà, 2021]

The webpage of the MaxSAT Evaluation:
https://maxsat-evaluations.github.io/.

J. Berg (HIIT, U. Helsinki) SAT-based MaxSAT August 4 25 / 25

https://maxsat-evaluations.github.io/


Conclusions

SAT-based MaxSAT solving:
Effective approach for solving industrial MaxSAT instances
Combine various algorithms and heuristics in non trivial ways.
Active (and interesting) area of research.

I Many ideas have also been studied in e.g. PBO and CP.
[Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Smirnov, Berg, and
Järvisalo, 2021; Gange, Berg, Demirovic, and Stuckey, 2020]

Further Resources
Surveys in the handbook of satisfiability [Bacchus, Järvisalo, and Martins, 2021; Li

and Manyà, 2021]
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Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit propagation to compute lower bounds in branch and bound max-sat
solvers. In Peter van Beek, editor, Principles and Practice of Constraint Programming - CP 2005, 11th International
Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture Notes in Computer Science,
pages 403–414. Springer, 2005. doi: 10.1007/11564751\ 31. URL https://doi.org/10.1007/11564751_31.
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